

City of Junction City, Kansas

Water and Wastewater Treatment Engineering Analysis and Pre-Design

February 17, 2014

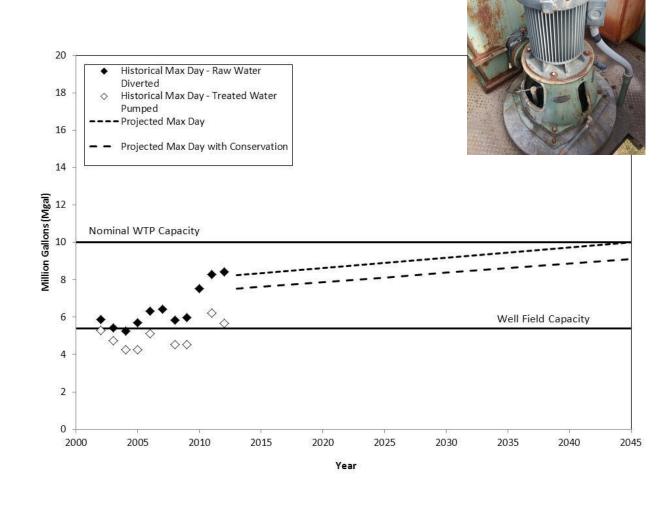
Agenda

- Background
- Water Treatment Plant
 - Key Issues
 - Recommendations
 - Project Phasing and Costs
- East Wastewater Treatment Plant
 - Key Issues
 - Recommendations
 - Project Phasing and Costs
- Southwest Wastewater Treatment Plant
 - Key Issues
 - Recommendations
 - Project Phasing and Costs

Background

- Water Treatment Plant
 - Constructed 1980
- East Wastewater Treatment Plant
 - Constructed 1954
 - Most recent upgrade 2000
- Southwest Wastewater Treatment Plant
 - Constructed 1996
 - Most Recent Upgrade 2006
 - Nutrient removal study completed February 2013
- Facility Contract Operations
 - November 1989 outsourced operations of Water and Wastewater
 - Amended and restated agreement June 2012 Water and Wastewater Project

Water Treatment Plant


Key Issues – Water Use/Regulatory

- Overpumpage of Water Rights to Meet Demands
 - 2011: over by 7.5%; 2012: over by 9.9%
 - Penalties may be assessed by DWR
- High Unaccounted-For Water
 - 2012: 25.5%, typical: 10-15%
 - Existing old meters not measuring water use accurately
- Inaccuracies in Metering at Plant
 - Raw water meters
 - High and low service pumping meters

Key Issues – Water Supply

- Declining Well Field Capacity
 - Overpumpage of wells
 - Minimal well maintenance
 - Hydraulic limitations
 - Well 16 nonoperational
 - Recent issues with Well 18

Key Issues – Water Treatment/Lime Softening

- Calcium Carbonate Deposition
 - Lack of stabilization/recarbonation
 - Deposition in piping, filters, hot water heaters, etc.
 - Hydraulic limitations
 - Plant piping
 - Distribution system
- Lime Sludge Lines Plugging
 - Large, gravity lime sludge piping plugs
 - Softening basins not operated as intended

Key Issues – Water Treatment/Clarification

- Non-Operational Chemical Equipment
 - Ferric sulfate, polymer
 - Overload filters with particulates

Key Issues – Water Treatment/Disinfection

Safety of Chlorine Gas System

- OSHA concern with chlorine gas piping
- No means to close valves upon chlorine leak remotely
- Manual switching from empty to full cylinders

Disinfection By-Products

- Stage 1 sample site in compliance but elevated
- Stage 2 IDSE samples showed one remote site that was high
- Stage 2 compliance began October 1, 2013

Key Issues - High and Low Service Pumping

Service Issues

- One low service pump out of service
- Increased discharge pressure of pumps
 - Due to calcium carbonate deposition
- 2400V MCC (medium voltage)
 - Disconnect switch unreliable
 - 30 years old end of useful life

Replacement Issues

- Medium voltage (2400V) vs. low voltage (480V)
 - Low voltage reduces capital costs and maintenance
 - Pump motors, soft starts
 - Electrical switchgear, MCC
 - Eliminates transformers

Key Issues – Plant Finished Water Storage

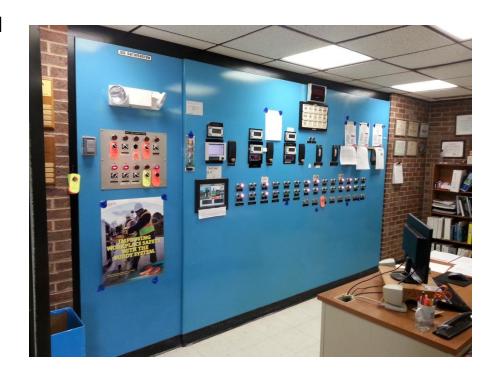
Maintenance

- Exterior paint peeling
 - Aesthetics for community
 - Preserve service life of steel
- Lead paint
- No Redundancy
 - Maintaining tank is problematic
- Mixing
 - Improve turnover of tank contents

Key Issues – Electrical

Main Switchgear

- Main switch not operable
- Cannot turn power off to plant
- 15kV (high voltage) vs 480V (low voltage)
- Transformers
 - T-1, T-2
- No Back-Up Power
 - Plant and wells not operable during power outage


Key Issues – SCADA/Instrumentation

No SCADA system

- Limits productivity of staff / increased manpower
 - Well flow and water level read locally
 - Filter backwash manually initiated and ended

Instrumentation

- Existing phone line signal telemetry unreliable
 - Well #6, 11, 17 Controls

Key Issues – Maintenance

- Piping / Equipment Requires Painting
 - Wells, basin equipment, plant piping
- Building Roof
 - Roof leaks during rain storm
 - Plant staff mop up water or contain in buckets
- HVAC
 - Humidity control is an issue
 - Equipment beyond life expectancy
 - Lack of control within the building

- Water Use
 - Overpumpage of Water Rights to Meet Demands
 - Submit application to DWR for water rights through Water Assurance District
 - Implement water conservation rates
 - High Unaccounted-For Water
 - Replace customer meters
 - Install bulk water station
 - Inaccuracies in Plant Metering
 - Replace raw water meter
 - Replace high and low service meters
- Water Supply
 - Declining Well Field Capacity
 - Install a horizontal collector well
 - Implement well maintenance program for existing wells

- Water Treatment Lime Softening
 - Calcium Carbonate Deposition
 - Install carbon dioxide feed for recarbonation
 - Clean basin weirs, downstream piping of deposition
 - Lime Sludge Lines Plugging
 - Install smaller lines to lagoons with cleanouts; use existing pump station
- Water Treatment Clarification
 - Non-Operational Chemical Equipment
 - Install new ferric and polymer feed systems

- Water Treatment Disinfection
 - Safety of Chlorine Gas System
 - Convert from pressure feed system to a vacuum feed system
 - Install automatic shut-off valves on ton cylinders
 - Install automatic switchover
 - Disinfection By-Products
 - Install liquid ammonium sulfate feed to convert secondary disinfection to chloramines

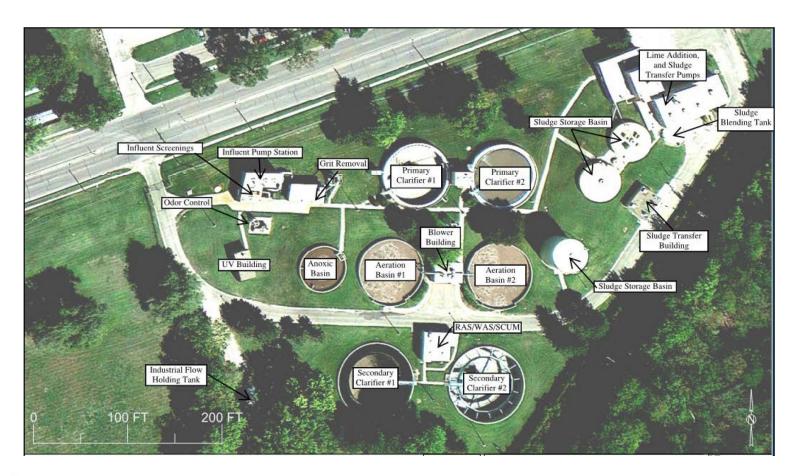
- Water Treatment Low and High Service Pumping
 - Increased discharge pressure
 - Replace high and low service pumps with pumps capable of higher pressure
 - Install surge relief valves for water hammer
 - Electrical
 - Replace MCC include soft starters for water hammer
 - Replace switchgear / abandon transformers
 - All work above at 480V (low voltage)
- Water Treatment Plant Finished Water Storage
 - Historically minimal maintenance
 - Take the tank out of service and sandblast and paint the interior and exterior
 - Redundancy
 - Construct an additional finished water storage tank
 - Mixing
 - Install a mixing system inside the tank

- Water Treatment Electrical
 - Main Switchgear / Transformers
 - Replace at 480V
 - Abandon transformers
 - Emergency Power
 - Install secondary power feed to plant and wells (in lieu of standby generation)
- Water Treatment SCADA/Instrumentation
 - SCADA System
 - Install a plant SCADA system
 - Instrumentation
 - Replace well controls
 - Replace other instrumentation in the future upon failure to be compatible with SCADA

- Water Treatment Maintenance
 - Piping / Equipment
 - Clean and paint exposed piping and equipment throughout plant including wells
 - Building Roof
 - Replace roof and skylights
 - HVAC
 - Replace HVAC equipment and controls
 - Install a dedicated air handling unit for the laboratory area
- Other Recommendations
 - Install a chlorine feed ahead of the aerators for periodic cleaning of the interior
 - Route lagoon decant to sanitary sewer instead of recycling to process
 - Install turbidimeters on individual filter effluent lines to monitor finished water quality and need for additional filtration capacity
 - Construct secondary containment for existing chemicals (current regulations)
 - Install a new gravel layer on well field access road

Project Prioritization

- Does not include distribution system piping
- Immediate Needs
 - Water rights application
 - Chlorine gas system improvements
- Other Projects
 - Phased according to:
 - Regulatory
 - Safety
 - Water quality
 - Capacity
 - Critical Asset
 - Reliability
 - Financial
 - Service Life
 - Productivity


_					PHASE			
	PROJECT		1		2		3	
_			(2	014 - 2015)		2016 - 2017)	(2	019 - 2021)
1	Plant Raw Water Meter				\$	73,000		
2	High and Low Service Pipe Painting/Meters/Surge Valves				\$	110,000		
	Horizontal Collector Well/Repair Well Controls (#6, 11, 17)		\$	3,762,000				
	Recarbonation (Carbon Dioxide Feed)		\$	755,000				
	Lime Sludge Improvements		\$	714,000				
	Lime Sludge Decant to Sanitary Sewer				\$	20,000		
7	Liquid Ferric Sulfate Feed System				\$	812,000		
	Liquid Polymer Feed System				\$	67,000		
9	Lime System Improvements		\$	77,000				
	Fluoride Feed System		\$	67,000				
11	Chemical Containment		\$	18,000				
12	Filter Effluent Turbidimeters		\$	19,000				
	Replace Filter Media						\$	164,000
	Chloramines Conversion (Ammonia Feed)		\$	137,000				
15	Chlorine Gas Feed System Improvements		\$	63,000				
16	High and Low Service Pump Upgrades/Electrical		\$	763,000				
17	Replace Transfer Pumps						\$	173,000
18	Elevated Water Storage Tank in High Pressure Zone						S	1,304,000
19	Ground Clearwell Improvements (Painting and Mixing)		\$	542,000				
20	Additional Ground Storage Clearwell						\$	1,344,000
21	Plant/Well Emergency Power		S	210,000				
22	SCADA/Well Controls				\$	483,000		
	Clean Piping and Basin Weirs of Deposition		S	55,000				
24	Paint Plant Piping and Equipment		_		S	60,000		
25	Replace Building Roof and Skylights		\$	271,000				
	HVAC Improvements		S	112,000	\$	91,000		
27	Re-Pave Plant Roadway		_		_		S	208,000
28	Gravel Surface Well Field Roadway						S	116,000
	Bulk Water Station		S	75,000				
	SUBTOTAL		S	7,640,000	\$	1,716,000	S	3,309,000
	Mobilization, Bonding and General Requirements	5.0%	S	382,000	S	86,000	S	165,000
	Overhead and Profit	10.0%	\$	764,000	\$	172,000	S	331,000
	SUBTOTAL		s	8,786,000	s	1,974,000	s	3,805,000
			_	-11	_	1,000	_	-11
	Contingency	25.0%	S	2,197,000	S	494,000	S	951,000
	SUBTOTAL		s	10,983,000	s	2,468,000	s	4,756,000
			_		_		_	1, 20, 20
	Engineering, Legal, Administrative	20.0%	\$	2,197,000	\$	494,000	S	951,000
	SUBTOTAL		S	13,180,000	S	2.962.000	S	5,707,000
					_		_	
	Additional Projects (Not Subject to Markups)							
	Water Conservation Rates				S	50.000		
	Customer Meter Replacements		S	600,000	Š	1,200,000		
	Water Distribution System Sample Stations				_	.,	S	108,000
	Distribution System Tank Inspections		S	80.000			•	,
	Spruce Street Booster Pump Station Overhaul		•	55,555	S	521.000		
_	TOTAL		S	13.860.000	_	4.733.000	S	5.815.000
			•	, _ , _ , _ , _ , _ , _ , _ , _ , _ , _	-			-,,

TOTAL (ALL PHASES)

PHASE

East Wastewater Treatment Plant

Key Issues – Preliminary & Primary Treatment

Headworks

- Gas Detection System Reliability Critical
- Odor Control Not Functional
- Doors, HVAC, Electrical Severely deteriorated
- Fine Screens (Hand Rails, Grating) Upgrade Required
- Grit Removal Air Lift Pump, Grit Building Doors, HVAC, Electrical

Influent Pump Station

Wet Well Cover – Brittle and collapsed

Primary Clarification

- Primary Sludge Piping End of Life
- Splitter Structure Uneven Distribution
- Sludge Pumps, Grinders End of Life

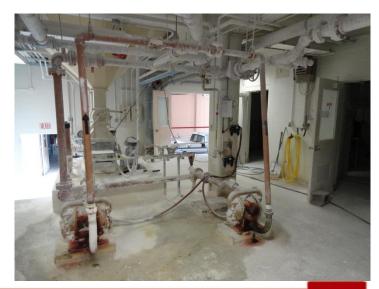
Key Issues – Secondary Treatment

Activated Sludge

- Blowers End of Useful Life
- Add Blower VFDs, Instrumentation & Controls Facilitate Proper Process Control, Energy Savings
- Aeration Diffuser System Upgrade needed to support capacity
- Anoxic Mixer End of Useful Life

Secondary Clarifiers

- Rehabilitate Clarifiers Mechanisms require replacement
 - One of two has been fixed to date
- RAS Pumps, WAS Pumps, Scum Pump Condition/End of Useful Life
- Algae in clarifiers needs to be controlled


Key Issues – Biosolids

Biosolids Treatment System

- Blending Tank Requires evaluation and recoating
- Storage Tank Requires evaluation and recoating; additional capacity needed
- Sludge Transfer Pumps –
 Condition/End of Useful Life
- Tank Blowers Aged
- Lime Feed System End of Useful Life, Deteriorated
- Lime Feed Room HVAC Inadequate

Lime Feeder Room – Poor HVAC, deteriorated equipment

Key Issues - Nutrient Removal

- Tankage
 - Need additional zone Anoxic Zone Required
- Recycle Pumping
 - Required to Support Nitrogen Removal
- Provide Chemical Feed Systems
 - Methanol Feed Carbon source to facilitate denitrification
 - Alum Feed Polishing step to meet phosphorus limits

Key Issues – SCADA/Instrumentation

- No SCADA system
 - Limits productivity of staff / increased manpower, efficiency of system, operations & maintenance costs increase
 - Alarm response time increased
 - Potential damage to equipment
- Instrumentation
 - Aeration System DO Control needed
 - Variable DO concentrations interfere with performance
 - Low DO results in inadequate nitrification
 - High DO wastes energy and can interfere with anoxic zone

Key Issues – Additional East WWTP Needs

Site Needs

- Laboratory Small and Deteriorated
- Locker Room Small and Deteriorated
- Pavement (Parking Lot, Walkways, and other deteriorated paved surfaces) Aged

East WWTP Recommendations

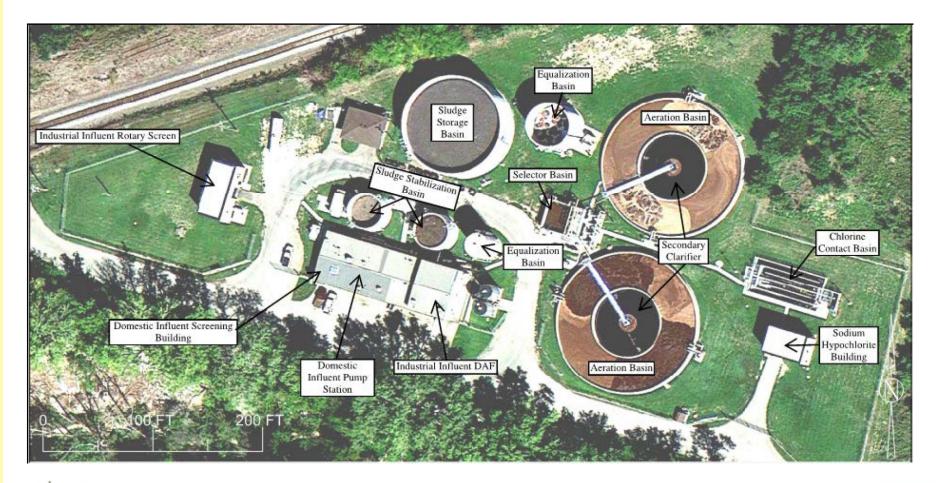
Maintenance Needs

- Replace Preliminary Treatment Systems
- Rehabilitate Headworks Building
- Rehabilitate Primary Clarifier System
- Rehabilitate Secondary Clarifier System
- Replace Biosolids Equipment
- Aeration System Diffusers and DO Control

Capacity Needs

Install Additional Biosolids Storage Tanks

East WWTP Recommendations


- Nutrient Removal Needs
 - Modify Existing Secondary Treatment Process
 - Chemical Feed Systems
- Other Recommendations
 - Install SCADA System
 - Remodel Locker Room, Laboratory
 - Replace deteriorated site paving
 - Replace/Upgrade Building HVAC, Electrical

East WWTP Project Prioritization

- Does not include any collection system improvements
- Immediate Needs
 - Replace gas detection/monitoring equipment in screening room
 - Replace failed clarifier bearing
- Other Projects
 - Phased according to:
 - Regulatory
 - Safety
 - Water quality
 - Capacity
 - **Critical Asset**
 - Reliability
 - **Financial**
 - Service Life

		PHASE			
FACILITIES		1 (2014 - 2015)	2 (2015 - 2017)	3 (2019 - 2021)	
1 INFLUENT PUMP STATION		\$41,000	\$0	\$0	
2 HEADWORKS BUILDING		\$130,000	\$706,000	\$0	
3 GRIT BUILDING		\$45,000	\$0	\$0	
4 PRIMARY CLARIFIERS		\$420,000	\$0	\$0	
5 PRIMARY SLUDGE PUMP STATION		\$282,000	\$0	\$0	
6 ANOXIC BASIN		\$0	\$47,000	\$0	
7 AERATION BASINS		\$185,000	\$266,000	\$0	
8 SECONDARY CLARIFIERS		\$502,000	\$0	\$0	
9 RAS/WAS PUMP STATION		\$0	\$235,000	\$0	
10 SLUDGE SYSTEM		\$298,000	\$344,000	\$1,681,000	
11 SITE		\$475,000	\$483,000	\$0	
12 BNR IMPROVEMENTS		\$0	\$0	\$1,029,000	
SUBTOTAL		\$2,378,000	\$2,081,000	\$2,710,000	
Mobilization, Bonding and General Requirements	5.0%	\$119,000	\$104,000	\$136,000	
Overhead and Profit	10.0%	\$238,000	\$208,000	\$271,000	
SUBTOTAL		\$2,735,000	\$2,393,000	\$3,117,000	
Contingency	25.0%	\$684,000	\$598,000	\$779,000	
SUBTOTAL		\$3,419,000	\$2,991,000	\$3,896,000	
Engineering, Legal, Administrative	20.0%	\$684,000	\$598,000	\$779,000	
TOTAL		\$4,103,000	\$3,589,000	\$4,675,000	
TOTAL ALL PHASES				\$12,367,000	

Southwest Wastewater Treatment Plant

Key Issues – Preliminary & Primary Treatment

Industrial Pretreatment

- Rotary Screen Clogging and Solids Handling Issues
- Rotary Screen Single Point of Failure
- pH Control Equipment Not Online
- DAF Unit Inefficient and at End of Useful Life
- DAF Building
 - HVAC, Lighting, Roof/Structure

Domestic Pretreatment

- Influent Pumps End of Life
- Influent Screen Normal Wear

DAF Room – Deteriorated Ceiling, Poor Lighting, High Humidity, Extensive Heat Loss (HVAC), Aged DAF (Below)

Key Issues – Secondary Treatment

- Activated Sludge
 - Aeration System
 - Replace Leaky Piping, Replace Blowers, Replace and Update Instrumentation
 & Controls, Install Diffused Aeration
 - Anoxic Zone Mixers
- Secondary Clarifiers
 - Secondary Clarifiers Mechanisms Worn
 - RAS Pumps, WAS Pumps, Scum Pump –
 End of Useful Life
- Disinfection
 - Chemical Feed Pumps End of Useful Life

Aeration System – Leaky Piping, Jet Aeration Pump Limitations, Blower Failure

Key Issues – Biosolids & Nutrient Removal

- Biosolids Treatment System
 - Sludge Transfer Pumps Worn and Deteriorated
 - Aerobic Digesters
 - Construct additional tankage and retrofit existing sludge storage tank
 - Install aeration systems in digesters and instrumentation and controls
- Nutrient Removal (BNR) Needs
 - Anaerobic Basin
 - Convert secondary clarifiers to anoxic basins
 - New secondary clarifiers
 - Chemical feed systems
 - Methanol and Alum Feed Needed
 - Recycle Systems
 - Pumps, Pipes, Electrical and Controls

Southwest WWTP Recommendations

Maintenance Needs

- Replace Industrial Pretreatment Systems
- Replace Municipal Preliminary Treatment Systems
- Rehabilitate Secondary Clarifier System
- Replace pumps, blowers, and mixers
- Replace Disinfection Chemical Feed Pumps

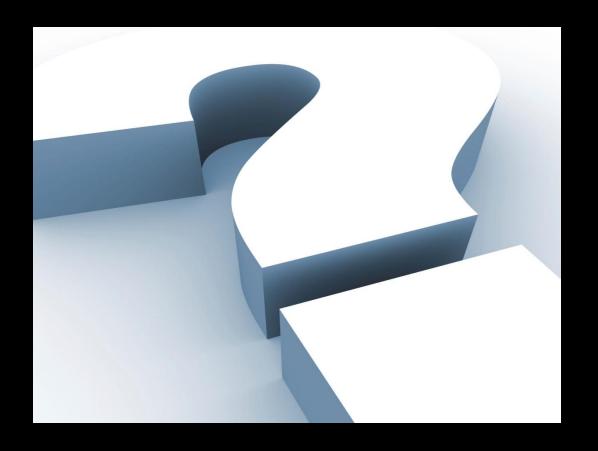
Capacity Needs

- Install Aeration System Diffusers and DO Control (Capacity and Maintenance Need)
- Install Biosolids Treatment System

Southwest WWTP Recommendations

- BNR Needs
 - Modify Existing Secondary Treatment Process
 - Convert Secondary Clarifiers to Anoxic Zone, Install New Secondary Clarifiers
 - Install New Anaerobic Basin
 - Install Recycle Pumping System
 - Chemical Feed Systems
- Other Recommendations
 - Replace/Upgrade HVAC, Electrical in DAF Building

Southwest WWTP Project Prioritization


- Does not include any collection system improvements
- Immediate Needs
 - Replace sludge stabilization tank mixers
 - Replace 1 WAS Pump
 - Replace 2 influent pumps
 - Replace DAF recycle pumps
 - Replace chlorine dosing pumps
 - Replace gas detection/monitoring equipment and room lighting in domestic screening room
 - Replace room lighting in industrial screening room
 - Replace water boiler for rotary screen
- Other Projects
 - Phased according to:
 - Regulatory
 - Safety
 - Water quality
 - Capacity
 - Critical Asset
 - Reliability
 - Financial
 - Service Life


		Phase	
FACILITIES	1 (2014 - 2015)	2 (2015 - 2017)	3 (2019 - 2021)
1 FLOW DIVERSION STRUCTURE	\$41,000	\$0	-
2 SCREENING - INDUSTRIAL AND DOMESTIC	\$163,000	\$153,000	\$0
3 ACID FEED SYSTEM	\$20,000	\$0	\$0
4 EQUALIZATION BASINS	\$0	\$169,000	\$0
5 DISSOLVED AIR FLOTATION	\$557,000	\$0	\$0
6 BNR	\$0	\$0	\$3,843,000
7 SELECTOR BASIN	\$0	\$46,000	\$0
8 AERATION SYSTEM	\$899,000	\$0	\$0
9 SECONDARY CLARIFIERS	\$3,083,000	\$0	\$0
10 WAS/RAS/SCUM	\$41,000	\$16,000	\$0
11 SLUDGE SYSTEM	\$0	\$6,175,000	\$0
SUBTOTAL	\$4,804,000	\$6,559,000	\$3,843,000
Mobilization, Bonding and General Requirements 5.0%	\$240,000	\$328,000	\$192,000
Overhead and Profit 10.0%	\$480,000	\$656,000	\$384,000
SUBTOTAL	\$5,524,000	\$7,543,000	\$4,419,000
Contingency 25.0%	\$1,381,000	\$1,886,000	\$1,105,000
SUBTOTAL	\$6,905,000		4-11
Engineering, Legal, Administrative 20.0%	4.41		
TOTAL	\$8,286,000	\$11,315,000	\$6,629,000
TOTAL ALL PHASES			\$26,230,000

Next Steps

- Water and Sewer Rate Analysis
 - Revenue Bonds
 - Low-interest Loan
 - Grants
- Discussions with Armour Eckridge to understand their future needs

Questions

